Sequence-Specific Dimerization of a Transmembrane Helix in Amphipol A8-35

نویسندگان

  • Michael Stangl
  • Sebastian Unger
  • Sandro Keller
  • Dirk Schneider
چکیده

As traditional detergents might destabilize or even denature membrane proteins, amphiphilic polymers have moved into the focus of membrane-protein research in recent years. Thus far, Amphipols are the best studied amphiphilic copolymers, having a hydrophilic backbone with short hydrophobic chains. However, since stabilizing as well as destabilizing effects of the Amphipol belt on the structure of membrane proteins have been described, we systematically analyze the impact of the most commonly used Amphipol A8-35 on the structure and stability of a well-defined transmembrane protein model, the glycophorin A transmembrane helix dimer. Amphipols are not able to directly extract proteins from their native membranes, and detergents are typically replaced by Amphipols only after protein extraction from membranes. As Amphipols form mixed micelles with detergents, a better understanding of Amphipol-detergent interactions is required. Therefore, we analyze the interaction of A8-35 with the anionic detergent sodium dodecyl sulfate and describe the impact of the mixed-micelle-like system on the stability of a transmembrane helix dimer. As A8-35 may highly stabilize and thereby rigidify a transmembrane protein structure, modest destabilization by controlled addition of detergents and formation of mixed micellar systems might be helpful to preserve the function of a membrane protein in Amphipol environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study.

Amphipols are amphipathic polymers designed to replace or supplement detergents in membrane protein solution studies. Previous work has suggested both advantages and disadvantages to the use of a polyacrylate-based amphipol, A8-35, for studying the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). We investigated this issue further using a set of four amphipols with different chemical structures. P...

متن کامل

Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins.

Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep membrane proteins (MPs) water-soluble while stabilizing them biochemically. We have examined the factors that determine the size and dispersity of MP/APol complexes and studied the dynamics of the association, taking as a model system the transmembrane domain of Escherichia coli outer membrane protein A ...

متن کامل

Helix-helix packing in a membrane-like environment.

The unique ability of the glycophorin A transmembrane helix to dimerize in SDS has previously been exploited in studies of the sequence specificity of helix-helix packing in a micellar environment. Here, we have made different insertion mutants in the critical helix-helix interface segment, and find that efficient dimerization can be mediated by a wider range of sequence motifs than suggested b...

متن کامل

Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins

Amphipols (APols) are specially designed amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions in the absence of detergent. A8-35, a polyacrylate-based APol, has been grafted with an oligodeoxynucleotide (ODN). The synthesis, purification and properties of the resulting 'OligAPol' have been investigated. Grafting was performed by reacting an ODN carrying an amine-term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014